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A FREQUENCY INDEPECJDENT TECHNIQUE FOR EXTRACTING THE 

RIGID-BODY MOTION FROM THE TOTAL MOTION 

OF A LARGE FLEXIBLE LAUNCH VMICLE 

By James C. Howard 
Ames Research Center 

A method has been devised f o r  extract ing rigid-body motion f r o m  combined 
rigid-body and flexible-body motion. The method involves the use of process
ing functions and requires  t h a t  t he  number of sensing elements be equal t o  the  
number of modes of motion considered. Rejection of spurious flexible-body 
motion i s  accomplished by making t h e  processing function associated with each 
sensing element a prescribed function of t he  modal slopes or t he  modal d i s 
placements. When the  processing functions are  a l located as prescribed, t he  
information reaching an operator 's  display panel, or t he  summing junction 
where e r ro r  s ignals  are  generated, w i l l  not be contaminated by f l ex ib l e -
body motion. 

I n  the  f i r s t  pa r t  of the study, it i s  assumed tha t  t he  modal data  a re  
accurately known. However, uncer ta in t ies  i n  the d i s t r ibu t ion  of  m a s s ,  f l ex 
u r a l  s t i f fnes s ,  and shear s t i f f n e s s  may give r ise t o  e r ro r s  i n  the  calculated 
modal data. Additional e r rors  may r e s u l t  f r o m  inaccuracies i n  the mathemat
i c a l  model used t o  compute the  modal data. An invest igat ion of the  influence 
of modal e r rors  on displays of an example launch vehicle l ed  t o  the following 
conclusion. When the  rigid-body p i t ch  a t t i t u d e  i s  equal t o ,  or greater  than, 
the  amplitude of the  bending motion at the  nose of t he  vehicle, the  e r ro r  i n  
the  p i tch-a t t i tude  display never exceeds 16 percent provided the  modal errors 
do not exceed e i t h e r  +5O percent or -50 percent. 

The e f f ec t  of modal e r rors  on the  s t a b i l i t y  of the  controlled system i s  
such t h a t  cer ta in  combinations of e r rors  tend t o  degrade the s t a b i l i t y  of a t  
l e a s t  one of the bending modes; whereas, other combinations of modal e r ro r s  
tend t o  enhance s t a b i l i t y .  The system used f o r  s t a b i l i t y  analysis included 
the  rigid-body mode and two bending modes. For modal e r ro r s  of 10 percent or 
l e s s ,  and those combinations of modal errors tha t  tend t o  degrade s t a b i l i t y ,  
no i n s t a b i l i t y  occurred i n  e i the r  mode when the  loop w a s  closed with nominal 
gain.  The r e s u l t s  indicate ,  however, t ha t  the f i r s t  bending mode i s  more 
sens i t ive  t o  errors i n  the  modal data  than a re  t h e  second and, presumably, 
higher bending modes. These conclusions a re  based on the  assumption t h a t  the  
nominal modal data  are used without modification. Examination of t he  data 
reveals t ha t  it i s  always possible t o  insure bending mode s t a b i l i t y  by a s u i t 
able modification of the  processing functions t o  account f o r  an estimated 
magnitude of modal e r ror .  T h i s  i s  equivalent t o  t h e  use of s t ruc tu ra l  feed
back t o  s t a b i l i z e  the  bending modes i n  the  presence of e r ro r s  i n  the  modal 
data. 



INTRODUCTION 


The t a sk  of manually control l ing a la rge  f l e x i b l e  booster i s  complicated 
by the  m a n n e r  i n  which s t ruc tu ra l  feedback contaminates displays of vehicle 
motion. Likewise, the control  of f u l l y  automatic launch vehicles i s  rendered 
more d i f f i c u l t  by the  presence of spurious bending s ignals  at  the  summing 
junction where error  s ignals  are generated. To eliminate or mitigate f l e x 
i b i l i t y  e f fec ts ,  it i s  necessary t o  devise a method of extract ing rigid-body 
motion or bending motion from t h e  t o t a l  motion of a f l ex ib l e  body. Convention
a l ly ,  t h i s  problem has been solved by the  use of f i l t e r s  t o  exclude o r  a t tenu
a t e  a l l  s ignals  at bending mode frequencies. However, t he  advent of more f l ex 
i b l e  launch vehicle configurations has l e d  t o  a reduction i n  t h e  gap between 
the  frequencies of t he  closed-loop rigid-body mode and the  frequencies of the  
e l a s t i c  modes. Reduction of t h i s  gap severely l i m i t s  the  use of conventional 
f i l t e r s  and requires  the invention and development of new techniques f o r  
control.  Research on t h i s  problem at  Ames Research Center has been stimulated 
by the necessi ty  of  providing a human operator with displays of  rigid-body 
motion which are not contaminated by spurious bending information. 

The primary objectives of the present study are: (1)t o  describe a f re 
quency independent method f o r  extracting the  rigid-body motion from the  t o t a l  
motion of a la rge  f l e x i b l e  launch vehicle, (2)  t o  determine the  e f f ec t s  of 
errors i n  the modal data on displays of rigid-body a t t i t u d e  and a t t i t ude  r a t e ,  
and (3) t o  assess the  e f f ec t  of modal errors on closed-loop system s t a b i l i t y .  

Other approaches t o  t h i s  problem are described i n  references 1, 2, and 3. 

SYMBOLS 

e r ro r  coeff ic ient  

rigid-body t ransfer  function 

f i r s t  bending mode t r ans fe r  function 

second bending mode t r ans fe r  f’unction 

e r ro r  s igna l  

Young’s modulus of e l a s t i c i t y  

generalized force 

f i l t e r  t r ans fe r  function 

a t t i t u d e  sensor t r ans fe r  function 

i t h  a t t i t u d e  sensor t r ans fe r  function 



rate sensor transfer function 

second moment of a rea  

.J-i 
generalized s t i f f n e s s  

pitching-moment coef f ic ien t  

a t t i t ude  gain 

a t t i t u d e  rate gain 

r a t i o  of a t t i t u d e  r a t e  gain t o  a t t i t u d e  gain 

generalized force  coeff ic ient  f o r  the f i rs t  bending mode 

engine i n e r t i a  coef f ic ien t  f o r  t he  f i r s t  bending mode 

generalized force  coef f ic ien t  f o r  the  second bending mode 

engine i n e r t i a  coef f ic ien t  f o r  the  second bending mode 

mass per u n i t  length 

generalized m a s s  

l a t e r a l  force d i s t r ibu t ion  

function f o r  processing the  output of  a t t i t u d e  and a t t i t ude -
r a t e  sensors 

function f o r  processing accelerometer outputs i n  order t o  obtain 
rigid-body pitching acceleration 

function f o r  processing accelerometer outputs i n  order t o  obtain 
r i gi d  -body t r ans l a t iona l  acceleration 

increment i n  ppi(+)  

generalized coordinate 

increment i n  the  p i t ch  a t t i t ude  

p i tch-a t t i tude  display e r ro r  due t o  e r ro r s  i n  j t h  modal slope 

column vector consis t ing of t he  rigid-body p i t ch  a t t i t ude  and 
the  n generalized coordinates 

S complex frequency, 0 -I- j w  
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servo t r ans fe r  f'unction 

time 

distance measured along the longi tudinal  axis 

center-of-gravity locat ion 

bending deflection at  sect ion x and at time t 

thrust vector def lect ion 

determinant 

rate sensor damping 

s t ruc tu ra l  damping r a t i o  

bending angle a t  sensor locat ion i 

bending angle at the  nose 

commanded p i t ch  a t t i tude 

feedback s ignal  

output of an a t t i t u d e  sensor 

bending angle a t  nose i n  j t h  mode 

column vector of  measured angular displacements 

real component of frequency vector 

value of t he  j t h  modal displacement function a t  locat ion x i  

j t h  modal displacement function 

cofactor corresponding t o  cpij 

m a t r i x  operator, the  elements of which are t h e  modal slopes a t  
the  sensor locations 

value of the j t h  modal slope function a t  locat ion xi 

j t h  modal slope function 

cofactor corresponding t o  qij  

imaginary cowonent of  frequency vector 

break frequency of f irst-order f i l t e r  
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na tu ra l  frequency of j t h  s t r u c t u r a l  mode 


r a t e  sensor frequency 


break frequency of  f i r s t  -order servo 


Subscripts 

accelerated motion 

magnitude of the  subscripted variable resu l t ing  f r o m  bending 

center of gravi ty  

commanded value of the  subscripted variable 

locat ion a t  which subscripted function i s  evaluated 

denotes which bending mode the subscripted modal function describes 

general term of a se r i e s  of  modal functions 

magnitude of the  subscripted variable a t  the  nose 

pi tching motion 

r a t e  i n fo rmt ion  

t rans la t ion  

Superscript 

derivative with respect t o  t i m e  

The method proposed i n  t h e  present report  f o r  extract ing rigid-body motion 
f r o m  the  t o t a l  motion of a f l e x i b l e  body uses the  series expansion of the  
motion of t he  e l a s t i c  system i n  terms of t he  normal modes and the  generalized 
coordinates. In the present context, a normal mode of free vibrat ion i s  the 
s p a t i a l  function or shape a vibrat ing beam assumes when it i s  osc i l l a t ing  a t  
one of  i t s  na tura l  frequencies. The generalized coordinates axe the  t i m e  
functions or t he  functions t h a t  describe the  var ia t ion  of modal amplitude with 
t i m e .  The normal modes of free vibrat ion of an e l a s t i c  system can be computed 
when the d is t r ibu t ion  of mass, f l exura l  s t i f fnes s ,  and shear s t i f f n e s s  are 
known. Hence, the  modal functions can be obtained f o r  any e l a s t i c  system 
being considered. By equating measured sensor outputs t o  the  motion described 
i n  terms of a series of normal modes and generalized coordinates, a system 
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of equations i s  obtained which can be solved f o r  the  rigid-body components of 
t h e  motion, i f  the  nmiber of sensors equals the  number of terms of  t he  ser ies .  
It i s  not anticipated,  however, t h a t  more than a f e w  terms of the se r i e s  w i l l  
be necessary, s ince high frequency bending s ignals  can be eliminated, if 
necessary, by conventional f i l t e r i n g  techniques. The solut ion of t h i s  system 
of equations i s  presented i n  the  form of a series of products of processing 
functions and sensor outputs. The processing functions operate on the sensor 
outputs i n  such a way t h a t  t he  sum of t h e  processed outputs gives the  r ig id -
body motion. 

The advantages of the  proposed method are i t s  s implici ty  and the  absence 
of any need f o r  on-board computational capabi l i ty .  All t h a t  i s  required i s  
t h a t  t he  processing function associated w i t h  each sensor be a prescribed func
t ion  of  t he  modal data  at the  sensor locat ion.  Since the modal data  i s  a 
known function of  posi t ion along the  length of t h e  vehicle s t ructure ,  the  
processing functions may be precomputed, and hence no auxi l ia ry  on-board com
puting equipment i s  required. By the  use of t h i s  method, separation and r e j ec 
t i o n  of bending motion i s  accomplished even i n  s i tua t ions  where a bending 
frequency coincides with the  frequency of t he  closed-loop rigid-body mode. It 
i s  not necessary t o  know the  frequencies of the  e l a s t i c  modes since the  method 
does not r e l y  on the  r e l a t i v e  frequencies of the  closed-loop rigid-body control  
mode and the  e l a s t i c  modes. Instead, the  method uses the  known modal proper
t i e s  of t he  s t ruc ture  being controlled, and consequently i s  well  adapted t o  
s i tua t ions  where a body bending frequency coincides with or d i f f e r s  only 
s l i g h t l y  from the  control  mode frequency. 

AnrALYSIS 

Equations of  Motion 

When a beam i s  vibrat ing under the  influence of a concentrated or a d i s 
t r ibu ted  forcing function, the t o t a l  displacement can be described i n  terms of 
t he  normal modes of f r e e  vibrat ion and the  generalized coordinates. A normal 
mode of vibrat ion i s  the  space function or shape the  vibrat ing beam assumes 
when it i s  osc i l l a t ing  at one of i t s  na tura l  frequencies. In  f igure  1 are  
shown the  f i rs t  three  bending modes of a uniform f ree- f ree  beam. The general
ized coordinates a re  the functions which describe the  var ia t ion of modal ampli
tude with time. These functions can be obtained by solving the  p a r t i a l  
d i f f e r e n t i a l  equation of motion for an e l a s t i c  beam which i s  moving under the  
influence of concentrated or dis t r ibu ted  forcing functions. If shear deforma
t i o n  and ro ta ry  i n e r t i a  are neglected, the  plane e l a s t i c  motion of a continuous 
beam i s  described by the  following p a r t i a l  d i f f e r e n t i a l  equation, see 
reference 4. 
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The normal modes of vibrat ion are  obtained by solving the p a r t i a l  d i f f e r e n t i a l  
equation of motion for the  f r e e  osc i l l a t ions  af an e l a s t i c  beam. The relevant 
equation i s  

A solution t o  t h i s  equation may be obtained by assuming t h a t  the var iables  are 
separable and by using the  appropriate boundary conditions f o r  t he  beam. A 
free-free bean i s  chaac te r i zed  by the absence of end constraints ,  t h a t  is ,  
the  bending moments and shear forces  are  zero  a t  each end. With the  use of 
these boundary conditions, equation (2) may be solved t o  obtain the  s p a t i a l  
functions which may then be used t o  describe the  displacement of a beam which 
i s  undergoing forced osc i l la t ions .  I n  terms of the  displacement and time 
functions, the  t o t a l  bending displacement i s  given by 

where cpj(x) a re  the modal displacement functions and q j ( t )  are  the  general
ized coordinates, or the  functions which describe the var ia t ion of modal ampli
tude with time. 

Di f fe ren t ia l  Equation f o r  t he  Generalized Coordinates 

Upon subs t i tu t ion  f r o m  equation (3)  i n  equation (l), t he  following equa
t i o n  i s  obtained 

When each side of equation (4 )  i s  multiplied by cpi(x) and integrated over 
t he  length of t he  beam, taking advantage of t he  orthogonal property of the 
normal modes, the equation of motion f o r  the  j t h  mode assumes the following 
f o r m  

where M j  i s  the  generalized m a s s  o f  the beam i n  the  j t h  mode of vibration. 
A dot denotes d i f f e ren t i a t ion  with respect t o  time. The generalized s t i f f n e s s  
and the generalized forcing function in  the  j t h  mode of  vibrat ion a re  K j  
and Fj, respectively.  These quant i t ies  are  defined as f o l l o w s  
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M~ = sm(x)cpj2(x)a 

where the  in t eg ra l s  are taken over the  length of the beam. Equation (6)  does 
not include the  e f f e c t s  of  ro ta ry  iner t ia ,  nor does equation (7) r e f l e c t  the  
influence of shear deformation. Although shear deformation and ro ta ry  i n e r t i a  
should, i n  general, be included i n  any mathematical model which i s  being used 
t o  determine modal data, a discussion of these e f f ec t s  i s  not relevant t o  t he  
present invest igat ion,  where the  main objective i s  t o  process measured sensor 
outputs i n  such a way t h a t  rigid-body motion i s  extracted f rom combined r i g i d -
body and bending motion. The preceding simplified presentation i s  used only 
t o  e lucidate  t h e  arguments which f o l l o w .  For a complete derivation of t he  
equations of motion of an e l a s t i c  beam, the  reader i s  re fer red  t o  references 
4 through 8. Equation (5 )  may be rewri t ten as follows 

Fj (t)<j(t)-t w.Zq.(t) = - (9)J J Mj 

where Wj i s  the  na tura l  frequency of t he  j t h  f ree- f ree  mode. The external  
forcing function consis ts  of a l l  aerodynamic forces ,  t h rus t  forces ,  engine 
control-servo i n e r t i a  forces,  and propellant sloshing forces .  

S t ruc tura l  dam2ing.- I n  pract ice ,  an e l a s t i c  beam w i l l  possess some d i s -
s ipa t ive  forces  which provide damping. Since t h e  d iss ipa t ive  energy i s  usual ly  
s m a l l  i n  comparison t o  the  e l a s t i c  and k ine t i c  energies, t he  lower  modes w i l l  
be very l i g h t l y  damped. The d iss ipa t ive  force  can be taken in to  account by 
adding a s m a l l  viscous damping term t o  equation (9) .  When t h i s  i s  done equa
t i o n  (9) assumes the  following form 

(11) 
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where c j  i s  the  damping r a t i o  i n  t h e  j th  bending mode. A value of 
( j  = 0.005 was assumed i n  t h e  present study. 

T o t e  displacement o f  an e l a s t i c  beam which describes forced oscillations.-
In  t e r m s  of the normal modes and t he  corresponding generalized coordinates, 
the  t o t a l  displacement can be expressed as follows 

where the  normal modes are understood to include the rigid-body mode of trans
l a t i o n  of t he  center of gravity,  and the  rigid-body mode of ro ta t ion  of t h e  
beam about i t s  center of gravity.  I n  t h i s  formulation, the  normal mode of 
t rans la t ion  i s  uni ty  and the corresponding generalized coordinate i s  I n  
the  rotationalmode, t he  normal mode i s  x - xcg and the  corresponding

qT. 

generalized coordinate i s  qp. Equation (9)  can s t i l l  be  used t o  describe t h e  
rigid-body modes, provided 

where UT i s  the  frequency of the t r ans l a t iona l  mode and wp i s  the  frequency 
of the pitching mode. Note that a l l  the aerodynamic forces  are included i n  the  
external  forcing function F j ( t ) .  I n  view of these comments, equation (12) 
c m  be expanded as follows 

Separation of Rigid-Body and Bending Motion 

Angular displacements.- L e t  it be assumed tha t  equation (2) has been 
solved ah3 t ha t  modal displacement functions and modal slope functions are 
available.  If 0 i  denotes the  measured output from an a t t i t u d e  sensor 
located at s t a t ion  i on the s t ructure ,  then on d i f f e ren t i a t ing  equation (14) 
with respect t o  x, t he  t o t a l  angular displacement a t  loca t ion  i i s  obtained 
i n  t h e  following form 
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t h a t  i s  

If acprj(xi)/ax i s  denoted by q i j ,  where $ i j  = q j ( X i )  i s  the  modal slope f o r  
t he  j t h  bending mode at locat ion i, equation (16) may be rewrit ten as 
follows 

q i j ( x ) q j ( t )  (1.7) 
j=i 


The measured output Bi i s  seen t o  consis t  of (n+l) unknown components, t h a t  
i s ,  there  i s  the  unknown pitching angle yp and the  n generalized coordi
nates  qj .  However, a solution t o  equation (17)i s  possible if  (n+l)  sensors 
are used a t  (n+l )  d i s t i n c t  locations.  I n  t h i s  case there  would be (n+l) 
measured outputs �I t ,  giving r i s e  t o  (ncl) equations for the  (n+l) unknowns as 
f o l l o w s  

This matrix equation can be solved to determine the  unknown rigid-body r o t a 
t i o n  and the n generalized coordinates as functions o f  the  measured outputs 
f r o m  the  sensors and the  known modal data. Equation (18) may be wri t ten i n  
abbreviated f o r m  as f o l l o w s  

10 




where [O] i s  a column vector of measured angular displacements, and [Q] i s  a 
column vector consisting of  t h e  rigid-body p i t ch  a t t i t ude  and the  n general
ized coordinates. To simplify the  formulation, t he  f i rs t  column of the matrix 
operator [$] may be redefined t o  give 

$10 $11 $12 . . .  
$20 $21 $22 . . .  
$30 $31 $32 . . .  

. . .  
[$I = . . .  

. . .  
$no $n i  +n2 . . .  

$ln. 

4'2n 

q3n 

where q j0  = 1 for j= l ,  2, . . . , n+l. From equation (l9), the  column vector 
[ Q ]  i s  obtained i n  the following f o r m  

[Ql = [$I-'[@] (21) 

Y l O  y20 y30 Yno Yn+i,o 

yll y21 '31 ' Yni Yn+i,i 

'12 '22 '32 Y n 2  Yn+1,2 

[$I -1 = ap -
1 	 . . .  

. . .  

. . .  
Yin Y2n Y3n Ynn Yn+i,n 

where Y i j  i s  the  cofactor of the element q i j  i n  the  matrix [$I, and % 
i s  t h e  determinant of [$I. Upon subs t i tu t ion  from equation (22) i n  equation 
( 2 l ) ,  the  rigid-body ro ta t ion  i s  obtained i n  t h e  form of a series as follows 
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'311 

+ Y,,e2 + . 
that is, 

The coeff ic ient  of 8: i n  equation ( 2 3 )  w i l l  be denoted by P -($), and w i l l  
subsequently be re fer red  t o  as an a t t i t u d e  processing function3j)lsince t h i s  
f'unction i s  used t o  process the  output from an a t t i t u d e  sensor located a t  xi .  
With t h i s  notation, equation ( 2 3 )  my be rewri t ten as follows 

n+i  
n 

i=i 

where 

Special case. - To i l l u s t r a t e  the  method, equation (18) w i l l  be solved f o r  
the  case where i=3  and j-2. This i s  tantamount t o  the  assumption t h a t  bend
ing modes higher than the  second may be neglected. With these values of t he  
subscripts,  equation (18) reduces t o  

1 


1
I:;]=[1 


theref ore, 

'10 '20 '30 811:I) = $ ('11 '21 '32 1'2)'3 

q2 '12 '22 

I n  t h i s  case, equation (24) consis ts  of th ree  terms. Hence, 
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where 

and 

These are  the a t t i t u d e  processing functions o r  gains t o  be used with the out
puts  el, e2, and e3, respectively.  When the  outputs from the  three a t t i t ude  
sensors are  processed i n  the manner described, t he  inf'ormation reaching an 
operator 's  display panel, o r  the summing junction where e r r o r  signals are  
generated w i l l  be rigid-body information only. O f  course, t h i s  i s  contingent 
on the  va l id i ty  of the assumption tha t  the  motion of the  system can be ade
quately represented by t w o  bending modes. It can be seen t h a t  the  a t t i t ude  
processing functions depend only on the modal slopes. Hence, these functions 
can be computed and stored p r io r  t o  launch. Variation of modal data during 
f l i g h t  may require t h a t  the  appropriate processing fbnctions be programed t o  
compensate f o r  these var ia t ions.  The sens i t i v i ty  of the processing functions 
t o  changes i n  the modal data  w i l l  be discussed later. 

Angular r a t e s .  - If h i  denotes the  output f r o m  an angular r a t e  sensor 
located at  X i  on the  e l a s t i c  s t ructure ,  then d i f fe ren t ia t ion  of equation (1.7) 
with respect t o  time y ie lds  the  equation f o r  the angular rates i n  the f o l l o w 
ing f o r m  

j=i 


As i n  t h e  case of angular displacements, the  solution of the  angular rate 
problem requires  t h a t  (n+l) r a t e  sensors be used a t  (n+l) d i s t i n c t  locations.  



The information obtained f r o m  t h i s  number of  sensors i s  the  amount required t o  
permit separation of  rigid-body rates from combined rigid-body and bending 
ra tes ,  by providing (n+l) equations f o r  the  (n+l)  unknowns. The measured 
angular r a t e s  are r e l a t ed  t o  the rigid-body pi tching r a t e  and the  rates of 
change of  the  generalized coordinates i n  the  same manner i n  which the  angular 
displacements a re  r e l a t ed  to t he  p i t ch  a t t i t u d e  and the  generalized coordi
nates.  Hence, 

(34) 

where [6] i s  a column vector of measured angular rates, and [Q]  i s  a column 
vector consisting of the  rigid-body pitching rate and the  rates of change of 
t he  generalized coordinates. The matrix [$] i s  defined i n  equation (20) where 
$ io  = 1f o r  id, 2, . . . , nt-1.. Equation (34) can be solved t o  obtain the  
column vector of unknown r a t e s  [ Q ]  i n  terms of the measured r a t e s  and the  
'known modal slopes 

-1 
where [ $ I  i s  given by equation (22).  It f o l l o w s  tha t  the measured angular 
rates are  processed i n  the  same manner as the measured angular displacements. 
Theref ore  

n+i 

ap = 1p p i ( $ ) i i  (36) 
i-1 

where the  processing functions Ppi($) have the  values given by equation (25).  

The block diagram of f igure 2 indicates  how the rigid-body p i t ch  r a t e  may 
be extracted from the  t o t a l  motion of a f l ex ib l e  body. The three r a t e  sensors 
are assumed to have t r ans fe r  functions of the  f o r m  shown. It i s  seen t h a t  the  
rigid-body p i t ch  r a t e  i s  obtained by weighting the  output of  each sensor by the 
appropriate processing function and summing. The funct ional  forms Ppi( $) of 
t he  processing functions are  shown i n  the  f igure.  The blocks G i ,  i=1,2,3, 
represent the  a t t i t u d e  sensors t o  be used i n  conjunction with the  corresponding 
processing functions t o  give rigid-body p i t ch  a t t i t ude .  I n  cases where it i s  
desirable to supplement the a t t i t u d e  and a t t i t ude - ra t e  information with accel
e ra t ion  feedback, the  output of a su i tab le  number of accelerometers must be 
processed i n  order to ext rac t  t he  rigid-body acceleration f rom the  t o t a l  
acceleration of a f l ex ib l e  body. The method i s  similar to t h a t  described f o r  
obtaining rigid-body a t t i t udes  and a t t i t ude  r a t e s  from the outputs o f  a t t i t ude  
and a t t i t ude - ra t e  sensors. However, because of the  f a c t  t ha t  the  rigid-body 
acceleration consis ts  of a t rans la t iona l  and ro t a t iona l  component, an addi
t i o n a l  sensor i s  required t o  provide suf f ic ien t  information f o r  determining 
the  rigid-body components of acceleration. The method i s  described i n  appendix 
A, where the processing functions required t o  ex t rac t  rigid-body acceleration 
f rom accelerometer outputs are  derived f o r  the  general case of the two r i g i d -
body mode components and n bending mode components. 

14 




APPLICATION OF FG3SULTS OF ERROR ANALYSIS TO 
A LARGE FLLMIBLF: BOOSTER 

Influence of E r r o r s  i n  the Modal D a t a  
on Displays of Vehicle Motion 

Since e r ro r s  i n  t he  modal data  give r i s e  t o  e r ro r s  i n  the processing 
functions, and hence t o  display e r rors  and er rors  i n  the  feedback control  
s ignal ,  it i s  necessary t o  examine the  influence o f  these errors on displays 
of vehicle motion and on the  s t a b i l i t y  of the  closed-loop system. In  t h i s  
section, the influence of e r ro r s  on displays of vehicle motion w i l l  be 
considered. 

The influence of e r ro r s  i n  the  modal data  on displays of vehicle motion 
w a s  computed for a model vehicle. The model vehicle which i s  representative 
of a typ ica l  large f l e x i b l e  space vehicle booster, and which w a s  supplied by 
the Aero-Astrodynamics Laboratory of t he  Marshall Space Fl ight  Center, i s  s i m i 
lar t o  or l a rger  than the Saturn vehicle, bu t  i s  not intended t o  represent any 
specif ic  vehicle. The modal data  f o r  t h i s  vehicle i s  shown i n  tab le  1 for a 
f l i g h t  t i m e  of 80 seconds. To produce meaningful r e su l t s ,  the  locations chosen 
f o r  the sensors represent possible sensor locations f o r  the model booster con
f igura t ion  (see f i g .  3 ) .  For the  following computations, the sensors were 
located at distances of 19.3, 48.1, and 69.7 meters f rom the gimbal axis .  

Atti tude e r rors  and a t t i tude- ra te .  e r ro r s  resu l t ing  f r o m  inaccuracies i n  
the  modal data.- An IBM 7090 d i g i t a l  computer w a s  used t o  compute the a t t i t u d e  
processing functions f o r  a system with t w o  bending modes. The i n i t i a l  computa
t ions  were f o r  nominal values of  the modal slopes a t  th ree  d i s t inc t  sensor 
locations.  Since the  influence of  e r rors  i n  the  modal data  on computed values 
of the processing functions depends on which modal slope o r  group of modal 
slopes i s  i n  e r ror ,  t he  coinputations must be su f f i c i en t ly  comprehensive t o  
include a l l  possible combinations of modal slopes. For three a t t i t ude  sensors 
and with the assumption t h a t  modal exci ta t ion i s  confined t o  the f i r s t  t w o  
bending modes, a t o t a l  of s i x  modal slopes i s  required t o  compute the three 
processing functions. I n  t h i s  case, a t o t a l  of (2"-1) combinations of modal 
slopes i s  possible.  Hence, if the percent e r ro r  assigned t o  each member of a 
group of modal slopes can assume a posi t ive a negative value, it would be 
necessary t o  compute each processing function 63 times for each percentage 
e r ro r  assumed i n  the  corresponding members of the group. However, if  it i s  
assumed t h a t  the  percent e r ro r  i n  each member of a group of modal slopes has 
the same sign, re la t ionships  between the  errors i n  d i f f e ren t  groups of modal 
slopes can be established. Because of these relat ionships ,  the number of 
coinputations can be reduced as follows: If q i j  i s  assumed t o  have an e r ro r  
of n percent subject t o  the  constraint  t ha t  a l l  o ther  modal slopes a re  f r e e  
from e r r o r ,  an e r ro r  i n  the  remaining slopes from the  same mode can be r e l a t ed  
t o  the  assumed e r ro r  i n  q i j .  The slope at sensor locat ion 1 i n  mode j i s  
denoted by q . Subsequent t o  the introduction of an n percent e r ror ,  t he  
slope at $ljljbecomes (l+n/lOO) $lj. If the j t h  modal slope function i s  
now normalized t o  q l j  a t  sensor location 1, the  slopes a t  sensor locations 
2 and 3, i n  mode j ,  assume the  values $2j/(l+n/100) and $3j/(l+n/100), 
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respectively.  Hence, an e r r o r  of n percent i n  q1,j i s  equivalent t o  an 
e r ro r  of N percent i n  the  slopes q2j and q3j, where 

N = - loon (37)100 f n 

Similar reasoning shows t h a t  an n percent e r ro r  i n  $zj  i s  equivalent t o  an 
N percent e r r o r  i n  q1j and q3j. Likewise, an error  of n percent i n  q3j 
i s  equivalent t o  an N percent e r ro r  i n  q1j and q2j. Consequently, a given 
percentage e r ro r  i n  a s ingle  modal slope has the  same influence on t h e  process
ing functions as a n  equivalent percentage e r r o r  i n  each member  of a group of 
t w o  modal slopes as follows: 

$12 a q22q32 

Therefore, out of  a t o t a l  of 1.5 p a i r s  of modal slopes, the  e r rors  i n  6 of 
these are  r e l a t ed  t o  the  errors i n  the  modal slopes taken one at a time. 
Hence, it i s  only necessary t o  consider e r r o r s  i n  the remaining 9 pa i r s  of 
modal slopes. As a consequence of  similar reasoning applied t o  the  remaining 
groups of modal slopes, it can be shown tha t  ou t  of a t o t a l  of 63 possible 
combinations of modal slopes, it i s  only necessary t o  consider 24 of these.  
O f  course, these computations would apply t o  only one s e t  of sensor locations.  
If a range of sensor locat ions were considered, the  computations would have t o  
be repeated f o r  each set of locations.  

Errors i n  the  p_roce-s-sing_functio-ns- in te rpre ted  -as- display_-exyors. - By 
refer r ing  t o  f igu re  4, it can be seen t h a t  the  a t t i t u d e  e r ro r  per degree of 
a t t i t ude  sensor output ,  or the  rate e r ro r  per degree per  second o f  rate sensor 
output. i s  simply the e r r o r  [pi induced i n  the  processing function P i  by 
errors i n  the modal data. The conibined- e f f ec t  of  these errors i s  given by 

$ t rue  value of  

A$ assumed e r ro r  

m p i  Ppi(+ + A $ )  
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eBi i s  the bending angle a t  sensor location i, t ha t  i s  

The equation f o r  8qp may be rewri t ten as f o l l o w s  

i=i 

It can be shown t h a t  aPpi = 0; therefore t h i s  equation reduces t o  the 

i=i 
simpler f o r m  

theref ore 
2 3 2 

where 

This equation may be used t o  r e l a t e  6qp t o  the  bending angle a t  some r e f e r 
ence location. If the  nose of the  vehicle i s  chosen as the reference location, 
and if  ~ B N  denotes the bending angle at t h i s  location, then 

where eNj = qNjqj i s  the  bending angle a t  the  nose i n  the  j t h  mode. Equa
t i o n  (39) may be rewri t ten i n  the following form 
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where 

Numerical Results 

It i s  seen t h a t  Gqpj i s  a measure of  the  e r ro r  i n  the  rigid-body pi tch-
a t t i t u d e  display per  degree of bending a t  the  nose i n  the  j t h  mode. Like
wise, Gqpj may be in te rpre ted  as the error  i n  the  rigid-body p i tch- ra te  d i s 
play, per degree per second of bending rate a t  the  nose, i n  the  j t h  mode. 
If there  are no errors i n  the  modal data, these coef f ic ien ts  a re  zero and the  
bending motion i s  completely f i l t e r e d  out. When the  data  corresponding t o  a 
f l i g h t  time of 80 seconds w a s  processed, t he  values of the  coef f ic ien ts  shown 
i n  tab le  2 were obtained. The computed values of  these coeff ic ients  a re  tab
u la t ed  as a f'unction of t he  percentage e r ro r s  i n  a given modal slope o r  group 
of  modal slopes. It i s  seen t h a t  when the  amplitude of the rigid-body p i t ch  
a t t i t ude  i s  grea te r  than, o r  equal to ,  the  bending motion a t  the  nose of the 
vehicle, the e r r o r  i n  the  p i t ch  a t t i t u d e  display never exceeds 16 percent if 
modal slope e r ro r s  do not exceed e i the r  +5O percent o r  -50 percent. 

Influence of Er rors  i n  the Modal Data on the  
S t a b i l i t y  of the  Closed-Loop System 

Analysis.- From f igu re  4 it i s  seen t h a t  if 8 i  denotes the  t o t a l  angu
lar  displacement as seen a t  the i t h  sensor, then f r o m  equat im (1.7) 

6i = qp + i q i j q j  (43) 
j= i  

Therefore, 
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- - - - - 

For t he  case considered, the  air-frame dynmics may be represented by three  
p a r a l l e l  elements as shown i n  sketch (a). 

I 

91 rigid-body t r ans fe r  function 
----- --

I 1 D1 f i r s t  bending mode t ransfer  
1F t - - - - , + -9 function 

I 
I II 

D2 second bending mode t r ans fe r  
I function 

where 6 i s  the  th rus t  vector der-ec-
Sketch (a) t ion .  Therefore 

From f igure  4, it i s  seen t h a t  if t he  r a t e  feedback loop i s  omitted, the  open-
loop t ransfer  f ine t ion  i s  given by 

i = 1, 2, o r  3 i n  f i r s t ,  second, o r  t h i r d  group, respectively.  

QF feedback s igna l  


e error signal 


F(s) f i l t e r  t r ans fe r  function 


S( s )  servo - t ransfer  function 


Gi a t t i t u d e  sensor t r ans fe r  function 


K
qP 

p i t ch  a t t i t ude  gain 
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With t h e  assumption t h a t  t h e  a t t i t u d e  sensors have the  same transfer f’unction, 
t h a t  i s ,  G1 = G2 = G3 = GA, equation (45) can be rewrit ten as 

3 3 3 1
\1 m 

However, by using equations (29) through (32) and the  def in i t ion  of aPpi(q ) ,
it can be ve r i f i ed  t h a t  

and 

Ppi(q) = 1 (47) 
5-1 

(It i s  in te res t ing  t o  note t h a t  !3: = 0. This implies t ha t  i n  the  

i-1 
absence of bending, the  rigid-body display will not be affected by errors i n  
the  processing functions induced by e r ro r s  i n  the  modal da ta . )  Therefore, 

A s  defined i n  equation (40) 
3 


a1 = 	 )J q i i  m-pi(*) (49) 
i=l 
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therefore,  

e2 = [F(s)S(s)GA(i+ + alD, + (51.1 

If a t t i t ude  rate feedback i s  included, the  open-loop t r ans fe r  function must be  
modified accordingly. I n  this  case 

eF - F(s)S(s)  DR -I- ajDj(GA + KRSGR)K 
F - [  ( z1) ].. 

where 

and 

Since pr inc ipa l  s t ruc tu ra l  and control  system frequencies a re  very much l e s s  
than 9 it i s  permissible t o  assume f o r  present purposes t h a t  + = 1. Like
w i s e ,  because of  t he  absence of  f r e e  gyro dynamics, the  a t t i t u d e  t ransfer  
function a l s o  assumes the  form GA = 1. When these subs t i tu t ions  are  made i n  
equation (52), the  open-loop t r ans fe r  function assumes the  form 

Transfer function formulation.- For t he  purpose of ascer ta ining the  
influence of the  e r ro r  coef f ic ien ts  :j on the  s t a b i l i t y  of the  closed-loop 
system, an approximate t r ans fe r  function f o r  the  system shown i n  figure 4 was 
used. The f i l t e r  t r ans fe r  funct ion F(s) and the  servo-transfer function S ( s )  
were both assumed t o  be f i r s t - o r d e r  lags. I n  formulating the  rigid-body trans
fe r  function +(s), engine i n e r t i a  and aerodynamic e f f e c t s  were omitted. The 
f i r s t  and second bending mode dynamics were t r ea t ed  as second-order systems 
i n  which engine i n e r t i a  and s t ruc tu ra l  damping w e r e  included. The open-loop 
t ransfer  function given by equation (53) consis ts  of the  following elements: 
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See t ab le  3 f o r  l i s t  of coef f ic ien ts  used. 

E r r o r  coefficients-.- The e r ror  coef f ic ien ts  a1 and a2 are  a measure of 
the  influence of e r ro r s  i n  the modal data  on the dynamic response of the sys
tem. If there  are no modal errors,  these coef f ic ien ts  are zero and, conse
quently, the  bending motion i s  completely f i l t e r e d  out. The determination of 
the extent of the  influence of modal errors on the  s t a b i l i t y  of the  controlled 
system requires t h a t  equations (49) and (50) be evaluated. A d i g i t a l  computer 
program w a s  f o r m l a t e d  t o  evaluate these equations f o r  a range of assumed 
e r ro r s  i n  the  modal slopes. The e r ro r  coef f ic ien ts  which a re  tabulated as a 
function of the percentage e r ro r s  i n  a p a i r  of modal slopes i n  tab le  4 
are  typ ica l  of the values obtained. The error  coef f ic ien ts  corresponding t o  
the e r rors  i n  any other  group of modal slopes a re  re la ted  by equation (42) t o  
the  Gqpj coef f ic ien ts  shown i n  t ab le  2. I n  computing these coeff ic ients ,  it 
w a s  assumed tha t  t he  sensors were located a t  distances of 19.3, 48.1, and 69.7 
meters f rom the gimbal axis. A f l i g h t  time corresponding t o  the condition of 
maximum dynamic pressure w a s  a l s o  assumed. The influence of the e r ro r  coef
f i c i e n t s  on the dynamic response of the system i s  given by equation (53) .  
This equation w a s  evaluated by using the tabulated values of the  e r ror  coef
f i c i e n t s  as input t o  a second d i g i t a l  computer program which w a s  devised t o  
provide frequency response and root-locus data. From the  s t a b i l i t y  point of 
view, the  e f fec t  of e r rors  i n  the  modal data  may be thought of as changing a 
system with idea l  (cancel la t ion)  compensation in to  one with unideal compensa
t ion,  the poles of t he  compensator being the  bending mode poles. I n  the  idea l  
case, when modal e r ro r s  are  absent, t he  poles and zeros of the compensator 
occupy the same locat ions i n  the  complex plane. However, when modal e r rors  
are  introduced, the  zeros of the compensator move away from the poles. For 
example, if the  modal errors are  such t h a t  a given e r ro r  coeff ic ient  a i  
assumes a negative value, the zeros of t he  corresponding compensator move away 
from the bending mode pole i n  the direct ion of  increasing complex frequency. 
Alternatively,  if  t he  modal e r rors  are such t h a t  an e r ro r  coeff ic ient  assumes 
a posi t ive value, the  zeros of  the corresponding compensator move closer  t o  
the or ig in  of the complex plane. The separation of the  poles and zeros of  the  
compensator with modal e r rors  introduces the poss ib i l i t y  of an unstable 
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condition when the  loop i s  closed. Examination of the tabulated e r ro r  coef f i 
c ien ts  reveals t h a t  f o r  the  sensor locations and f l i g h t  time chosen, these 
coef f ic ien ts  can have the  same or opposite sign, depending on which modal 
slope or group of modal slopes a re  i n  e r ro r ;  and a l s o  on whether the  modal 
e r ro r s  are  posi t ive or negative. Since the  r e s u l t s  contained i n  t ab le  4 have 
a l l  possible combinations of sign, these values of the error coef f ic ien ts  were 
used in  conjunction with equation (53) t o  construct t he  root-locus p lo t s  shown 
i n  f igures  5 through 18. 

Error coe f f i c i en t s  both pos i t ive . - I n  f igures  5 through 9 it i s  seen t h a t  
if  there  i s  a negative e r r o r  i n  mode 1 at  sensor location 1, and a negative 
e r ro r  i n  mode 2 a t  sensor locat ion 1, then both error coeff ic ients  are  posi t ive.  
I n  t h i s  case, both bending l o c i  l i e  en t i r e ly  i n  the le f t -ha l f  plane, indicat ing 
t h a t  both bending modes a re  s tab le  f o r  a l l  magnitudes of modal e r rors .  

.E r r o r  coef f ic ien ts  .al pos i t ive  and a2 negative.- This combination of 
e r r o r  coeff ic ient  signs i s  produced by a negative e r ro r  i n  mode 1 at  sensor 1, 
and a negative error  i n  mode 2 a t  sensor 2. Figures 10 through 12 show t h a t  
i n  these circumstances, the root-locus for the  f i r s t  bending mode l i e s  en t i r e ly  
i n  the l e f t -ha l f  plane, indicat ing tha t  i n  the presence of such modal e r rors ,  
the f i r s t  bending mode i s  always s table .  Although the locus f o r  the  second 
bending mode l i e s  i n i t i a l l y  i n  the  le f t -ha l f  plane, the f igures  show t h a t  as 
the  e r ro r  i n  the second mode i s  increased negatively a t  sensor 2, the s t a b i l 
i t y  of  the  second bending mode i s  degraded. Further increases of modal e r ro r s  
i n  the sense indicated may cause the  second bending mode t o  become unstable.  

E r r o r  coef f ic ien ts  al negative and a2 posi t ive.- A posi t ive e r ro r  i n  
mode 1 a t  sensor 1 and a 50-sitive e r ro r  i n  mode 2 a t  sensor 2 produces an e r r o r  
coeff ic ient  al which i s  negative and an e r ro r  coeff ic ient  a2 which i s  posi
t i v e .  A s  can be seen f r o m  f igures  1-3 through 15 the  root-locus f o r  the  second 
bending mode l i e s  e n t i r e l y  i n  the l e f t -ha l f  plane, indicating t h a t  the  second 
bending mode i s  always s tab le  i n  the  presence of such modal errors .  I n  t h i s  
case the  locus f o r  t he  f i rs t  bending mode, which i n i t i a l l y  l i e s  i n  the l e f t -
half  plane, moves in to  the  r ight-half  plane as the  modal e r rors  are  increased. 
Hence, modal e r rors  of t h i s  kind can produce an i n s t a b i l i t y  i n  the  f i r s t  bend
ing mode. 

E r r o r  coef f ic ien ts  both negative.- If both the  f i r s t  and the  second bend
ing modes have pos i t ive  e r ro r s  a t  sensor 1, both e r ro r  coeff ic ients  assume 
negative values. Although both bending modes are s tab le  f o r  s m a l l  e r rors  i n  
the  modal data, the presence of modal e r rors  of t h i s  type degrades the s t a b i l 
i t y  of both bending modes. If modal e r rors  are  su f f i c i en t ly  large,  both bend
ing modes become unstable.  Examination of f igures  16 through 18, however, 
reveals t h a t  f o r  the  nominal range of gain considered the  f i r s t  bending mode 
i s  more sens i t ive  t o  modal e r ro r s  than the  second. 

For the  sensor locat ions and the  f l i g h t  time chosen, it i s  immediately 
evident t h a t  the  system i s  s tab le  f o r  s m a l l  percentage e r rors  i n  the  modal 
data. However, it i s  seen t h a t  if the  e r ro r  i n  a given modal slope or group 
of modal slopes i s  such t h a t  an e r ro r  coef f ic ien t  a i ( i=1 ,2)  assumes a posi
t i v e  value, such modal e r ro r s  have a s t ab i l i z ing  influence on the correspond
ing mode i; whereas, i f  t he  modal e r rors  are such t h a t  an e r ro r  coef f ic ien t  
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a i  assumes a negative value, t he  e r rors  w i l l  have a destabi l iz ing influence 
on the  corresponding mode i. This suggests t h a t  an attempt be made t o  b i a s  
the  nominal. values of the  modal slopes i n  such a way as t o  insure tha t  t h e  
error coef f ic ien ts  are always posi t ive.  Examination of the  tabulated data  
reveals t h a t  it i s  possible  t o  do t h i s .  For the  case considered i n  t h i s  report ,  
both e r ro r  coef f ic ien ts  can be made pos i t ive  by assigning a negative b i a s  t o  
modal slopes $11,$21,$12 and a posi t ive b i a s  t o  the  slopes $'31, $22, and 
$'32. This i s  equivalent t o  the use of s t ruc tu ra l  feedback t o  s t ab i l i ze  the  
bending modes i n  the  presence of errors i n  t h e  modal data. 

CONCLUDING REMARKS 


A method has been devised f o r  extract ing rigid-body motion from the  t o t a l  
motion of  a f l ex ib l e  body. The method, which does not r e l y  on the r e l a t i v e  
frequencies of  t he  closed-loop rigid-body control  mode and the  e l a s t i c  modes 
as conventional f i l t e r s  do, i s  well  adapted t o  s i t ua t ions  where a f l ex ib l e -
body frequency coincides with, or d i f f e r s  only s l igh t ly ,  f r o m  the  control mode 
frequency . 

An analysis of  the  e f f ec t s  of  modal e r ro r s  on motion displays of a typ ica l  
launch vehicle indicates  t ha t  when the  amplitude of the rigid-body p i t ch  a t t i 
tude i s  greater  than o r  equal t o  the  amplitude of the  bending motion a t  the  
nose of the vehicle, the  e r ro r  i n  the p i tch-a t t i tude  display w i l l  always be 
less than 16 percent if the  modal slope e r ro r s  do not exceed e i the r  +5O percent 
o r  -50 percent. 

An analysis of t he  influence of modal e r ro r s  on the  s t a b i l i t y  of t he  
closed-loop system indicates  t h a t  ce r t a in  combinations of modal e r ro r s  tend t o  
degrade s t a b i l i t y  of a t  least one of the  bending modes; whereas, other combina
t ions  of modal e r ro r s  tend t o  enhance bending mode s t a b i l i t y .  For modal e r ro r s  
of 10 percent o r  l e s s ,  and those combinations of modal e r ro r s  t h a t  tend t o  
degrade s t a b i l i t y ,  no i n s t a b i l i t y  occurred i n  e i t h e r  mode when the loop w a s  
closed with nominal gain. The r e s u l t s  indicate ,  however, t h a t  f o r  the nominal 
range of gain considered the  f i r s t  bending mode i s  more sensi t ive t o  e r ro r s  i n  
the  modal data  than the second and, presumably, higher bending modes. 

It has been shown t h a t  when the  error  coef f ic ien ts  are posi t ive,  s t a b i l i t y  
i s  maintained without degradation. This suggests t h a t  an attempt be made t o  
b i a s  the  nominal value of t he  modal slopes i n  such a way as t o  ensure t h a t  the  
e r ro r  coeff ic ients  a re  always posi t ive.  Examination of t he  tabulated data  
reveals t ha t  it i s  possible t o  do t h i s  f o r  the  range of modal e r ro r  considered 
i n  t h i s  report .  This i s  equivalent t o  t he  use of s t ruc tu ra l  feedback t o  s tab
i l i z e  the  bending modes i n  the  presence of e r ro r s  i n  the modal data. 

It i s  not claimed tha t  the  r e s u l t s  of the  e r ro r  analysis  a re  complete. 
The assumption has been made tha t  the  e r rors  i n  each group of modal slopes a re  
always i n  the  same direct ion,  t ha t  i s ,  a l l  pos i t ive  e r ro r s  o r  a l l  negative 
e r rors .  It i s  more probable tha t  one o r  more members of  any group of modal 
slopes w i l l  be subject t o  e r rors  i n  one direction; while the remaining slopes 

24 




of the group will have errors of opposite sign. However, the error analysis 
given is felt to provide a basis for the assessment of the effects of the 
modal error distribution. 

Ames Research Center 

National Aeronautics and Space Administration 


Moffett Field, Calif., June 28, 1965 
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ACCEIXRATIONS I N  THE PITCH PLANE 


L e t  A i  denote t h e  output of an accelerometer which has i t s  sens i t ive  
axis i n  the  plane of t he  motion and perpendicular t o  the  longitudinal axis of 
the vehicle. If second-order quant i t ies  are neglected, and if  ( x i  - xcg) i s  
the distance of t he  i t h  accelerometer from the  center of gravi ty  of t he  
vehicle, then the  l i n e a r  accelerat ion a t  the  i t h  accelerometer m y  be 
obtained by d i f f e ren t i a t ing  equation (14) twice with respect t o  time 

r n 1 

where i s  the  component of rigid-body accelerat ion i n  t h e  t rans la t iona l  
mode, and cpi j  z cpj(xi) i s  the  modal displacement i n  the j t h  mode a t  sensor 
locat ion i. 

Because of t he  f a c t  t h a t  the  rigid-body acceleration has two components, 
t he  number of  sensors required t o  provide suf f ic ien t  information f o r  determin
ing the  rigid-body components and the  bending components i s  (nt-2). Hence, the  
equations t o  be solved are  

(412 . . .  i n  ST 
.. 

?22 . . .  92n qP 

. . .  
. . . .  

. . .  
'pn2 . . .  ?nn 

Yn+i,2 . . .  %-ti ,n . 
?n+2,2 . . .  ?n+2,n Sn , 

This matrix equation e m  be solved t o  determine the  unknown rigid-body accel
erat ions and t he  n bending accelerations as functions of the measured outputs 
from the  sensors and known modal data. To render these equations more 
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manageable, it i s  convenient t o  rewrite them i n  abbreviated f o r m  as f o l l o w s  

[AI  = [(pl[QI (A31 

where [A] i s  a column vector of measured accelerations,  and [Q] i s  a column 
vector consisting of the t r ans l a t iona l  acceleration, the  pitching acceleration, 
and the  n bending accelerations.  To simplify the  formulation, t he  f i rs t  t w o  
columns of t he  matrix [cp] are redefined as follows 

' TIT . . .  Tin \ 
92T . . .  T2n 

q3T . . .  Y3n 

. . .  
[ T I  = . . .  

. . .  
Yn+l ,T . . .  qn+i, n 

I 
9nc2 ,T . . .  %+2 ,n 

where 

= 1  cp i T  

and 

'pip = (Xi ,n+2 

The column vector of unknown accelerat ion compnents is obtained from equa
t i o n  (A3) i n  the form 

[Ql = [ c ~ l - ~ [ A l  (A5) 

where the  inverse of the  mtrix [cp] i s  given by 
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' O i T  O2T . . .  @n+i,T On+2,T 

@ 1P Q2P . . .  Qn+i,P Q n + 2 , ~  

Qll Q21 . . .  Qn+i,1 0n-1-2,1 
Q12 Q22 . . .  Qn+1,2 Qn+2,2 

. . .  

. . .  

. . .  
I Q i n  '2n . . .  'n+i,n 

where Q i j  i s  the  cofactor of  t he  corresponding element i n  the  matrix [cp]  and 
AA i s  the determinant of  [ c p ] .  

Rigid-body t r ans l a t iona l  acceleration. - Upon subs t i tu t ion  from equa
t i o n  (A6) i n  equation (A5), the rigidibody t r ans l a t iona l  acceleration i s  
obtained i n  the  f o r m  of the  se r i e s  

t h a t  i s  n-~-2 

The coef f ic ien t  of 4 i n  equation (A7) w i l l  be denoted by P~i(cp)and i s  the 
function t o  be used i n  processing the output from an accelerometer located a t  
x i  on the  f l ex ib l e  s t ructure ,  i n  order t o  obtain the  rigid-body t r ans l a t iona l  
acceleration. Equation (A7) shows t h a t  when the  output from each accelerometer 
i s  processed i n  t h i s  way, the  sum of the  processed outputs gives the  r i g i d -
body t r ans l a t iona l  accelerat ion (see f i g .  19).  In  terms of the  processing 
functions PTi('p), equation (A7) may be rewri t ten as f o l l o w s  

where 
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Rigid-body pitching acceleration. - Equations (A5)  and (A6) give the  r i g i d -
body pitching acceleration i n  the form of t he  series 

t h a t  i s  

The coeff ic ient  of  A i  i n  equation (Al.0) i s  the function t o  be used i n  proc

essing the output f r o m  an accelerometer located a t  x i  i n  order t o  obtain the  

rigid-body pitching acceleration. This processing function w i l l  be denoted by 

Ppi(cp). Equation (A10) shows t h a t  the sum of  the processed outputs gives the  

rigid-body pitching acceleration. In  terms of the  processing functions 

Ppi(cp), equation (AlO) may be rewri t ten i n  the following f o r m  


n+2 
7 


where 

Similarly, by using equation (A6)  t o  obtain the appropriate processing func
t ions,  it i s  possible t o  determine modal accelerations f r o m  which may be 
derived modal r a t e s  and modal displacements. These quant i t ies  may be used i n  
a feedback loop t o  supplement a t t i t u d e  and a t t i t ude  rate information. An 
in te res t ing  application which suggests i t s e l f  i s  the use of s t ruc tu ra l  feed
back t o  suppress o r  a t tenuate  f l ex ib l e  body motion by augmenting the  general
ized mass, the  s t ruc tu ra l  damping, and t h e  s t ruc tu ra l  s t i f fnes s .  See 
f igure 20. 
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TABLE I.	- BEXVDING MODE DATA 

t = 80 sec 
~ 

x9 

meters 
*cp,(x) 

0.1 1.1219 
2.5 1.0000 
4.9 -8773 

7.3 -7543 

9.7 .6290 


12.1- .5012 

14.5 3736 

16.9 .2449 

19.3 1-179 

21.7 - .003921 

24.1 - .1141 

26.5 - -2197 

28.9 -.3199 

31.3 -.4151 

33.7 -.5054 

36.1 - 5909 

38.5 -.6718 

40.9 - .7406 

43.3 -.7982 

45.7 -.8446 
48.1 -.8763 
50.5 -.8881 

52.9 -.8864 

55.5 - .8727 

57.7 -e8476 

60.1 - .8O9O 

62.5 - 7397 

64.9 - ,6468 

67.3 - 5299 

69.7 -.3864 

72.1 -.2158 

74.5 -.02079 

76.9 1957 

79.3 .4306 

81.7 .6809 

84.1 1.0037 

86.5 1.3616 

88.9 

91.3 2.1338 

93.7 2.5204 

96.1 2.9174 

98*5 3 9 3323 


100.9 3 7321 

1.03 3 4.1197 

1 7457 

QJX) 

0.05065
9 05097 

.05122 

.05151 

.05283 

.05346 

.05284 

.05386 
.05192 

-04955 
,04493 
.04294 
.om58 
.03867 
.03662 
.03604 
.03127 
.02625 
.02171 
.01690 
-008959 
.OO1829 

- 003258 
- .008 119 
-.02174 
-.02364 

- 03391 
- .O4356 -.05408 
- 06559 
-.07636 
-.08593 
- 09425 
-.1013 

-.io71 
-.1430 
-.1 5 5 1  
-.1645 

- 9 1595
-.1624 

- 1697 
-.1687 
-.1644 

-.1487 


~~ 


*cp,(x) Q&) 
1.1585 0.06504 
1.0000 .06693 

3373 ,06837 
.6728 .0698 5 

4969 .07623 
3099 .078 43 


.1254 ,07510 
- -06336 -07976-.2431 .06968 
- *  3947 .05402 
--4790 .o2767 -.5284 .01334 
-.5429 - .00088 4
-.5324 - .007722 -.5063 - 9 01393-.4647 -.02850 -.3838 -.03867 
-.2836 -.04463 
- .1686 -.05102 
-.03958 -.05626 

9 09996 -005935 
.2429 - -06033 - 3897 -.06186 
5389 - .06227 

.6878 -.06183 
08399 -.07291 

1.0081 -.06786 
1.1656 -.06302 
1.3085 -.05554 
1.5290 - 04374 
1.5155 -.02809 
1.5615 - ,009608 
1.5607 .01032 

1.5119 .03027 

1.4160 .04946 

1.1845 - 1235 


98365 .1638 

.4044 1952
-.2044 .2263 


- -6694 .2431 

-1.23411 2730 

-19730 2763 

-2.6196 .2614 

-3.2176 2373 
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TABU 11.-DISPLAY ERRORS CALCULATED FOR G I V "  ERRORS I N  MODAL SLOPES 
~ ~~ 

Percentace e r ro r  Display error. per  degree Percentage error Display e r ro r  per  degree I 
i n  modal slopes of bending at the  nose o i n  modal slopes of bending at  the  nose o 

the  vehic: i n  mode j the  vehicle,  i n  mode j 

Ill ESP1 6 ~ p 2  612 5np2 
-50 -0.07560 -50 0.08178 
-40 -.06005 -40 .061q
-30 -.Ob467 -30 .Ob324 

-10 -.01465 -10 .01288 
0 0 0 0 

10 .01442 10 -.01164 
20 .02863 20 -.02221 
30 
40 

.04261 

.05638 
30 
40 

-.03186 
-.om71 

50 .06994 50 V -.04880 
*2 1 "p 1 *a2 &5p2 

-20 -.02954 -20 .02(20 

-50 - .00708 -50 -.04227 
-40 -.00561 -40 -.03067 

-20 -.00274 -23 -.01293 
-10 -.00136 -10 -.00600 

0 0 0 0 
10 .00133 10 .00523 
20 .00264 20 .00984 
30 
40 
50 

.00392 

.00518 

.00642 

30 
40 
50 V 

.01393 

.01759 

.02087 

-30 -.00416 -30 -.02104 

- ~~ 

$31 bSp1 wp2 $32 65p2 
-50 .13490 -50 -.<3041 
-40 .09469 -40 -.02474 
-30 -06327 -30 -.01888 
-20 .o3802 -20 - .01281 
-10 

0 
10 -.01468 10 .00676 
20 -.0272a 20 .01378 

-.03822 30 .01$31 

0 0 
.01731 i -10 

0 
-.oo652 

I 
- .Ob781 40 .02865 
-.05628 50 V ~ 3 6 5 3  

~~ 

>Spl *11*22 

-50 -.io262 -50 -.05993
-40 -.075% -40 - .04185 
-30 -.05287 -30 -.02717 
-20 -.03292 -20 -.01555 
-10 -.01544 -10 -.00662 

0 0 0 0 0 
10 .01374 -.01155 10 .00467 
20 .02604 -.02190 20 .00771 
30 
40 

.03712 

.Oh715 
-.03122 
-.03965 

30
40 

.oog1;1 

.01001 
SO .os627 -.Ob772 50 .00973 

___ 

"¶p1 "p2 'l2L31 :¶p 
-.o6g6o -.019% -50 .07458 
- .05563 -.01761 -40 .05764 
-.04194 -.01478 -30 .04158 
-.02821 -.01094 -20 .02660 

I 0 0 
-.01429 

0 
-.00604 -10 

0 0 
-01277 

10 .01486 .00728 10 -.OUT3 
.03051 .01596 20 -.022501 ; .Ob722 .02622 30 -.03246 
.06530 -03833 40 -.O4163 
.08514 .05263 50 -.05010 

~~ 

mp1 s%= 621*32 "P-
-.oil03 -.04568 -50 -.02891 
- .00780 -.03245 -40 -.02381 
-.00525 - .02187 -30 -.01837 
-.00316 -.01323 -20 -.01260

I -10 	 -.001Id3  - .00607 -10 -.006L9 
0 0 0 0 

1: 	 .0012R .00518 10 .00678 
.00235 .00969 20 -01395 
.00330 -01361 30 .02137 
.00410 .01707 40 .02916 
.00484 .02010 50 .03721 
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TABLE 11.- DISPLAY ERRORS CALCULATED FOR GIVEN ERRORS IN MODAL SLOPES -
Coneluded 

Display e r ro r  per  degree Display e r ro r  per  Segree
Percentage e r r o r  of bpnding at  the  nose of F a r c r n t ~ ee r r o r  of bending a t  the  nose of

i n  ?nodal slopes the vehic le ,  in  mode j 
i n  modal slopes the  vehicle,  i n  mode j 

,222631 Fsp1 mp2 :22':'32 "$2 

-50 0.13470 -0.o0051 -50 -0.0~125 
-40 .09206 -.00995 -40 - ,06098 
-30 .06126 -.01159 -30 -.04307 
-20 .03705 -.09418 -20 -.02713 
-10 .01708 -.00523 -10 -.01285 

0 0 0 0 0 
10 -.01493 .00582 10 .oil63 
20 -.02818 .01l38 20 .02225 
30 -.Ob015 .01804 30 .03194 
40 -e05097 ,02415 40 .0m3 
50 -.06093 .03021 50 V .04901 

$31132 69p1 69p2 g l l * l 2 ~ 2 1  5qp1 mp2 

-50 .11681 -.Ob880 -50 -0.10793 .08656 
-40 .03534 - .O 3569 -40 -.08043 .06397 
-30 
-20 
-10 

A3645 
.01695 

-.01521 
-.00712 

-20 
-10 

-.03544 
- .01675 

e02773 
.01298 

0 0 0 0 0 0 
10 -.01493 .00624 10 .01511 -.01155 
20 
30 
40 

- .o28 18 
-.om01 
-.05057 

.oil76 

.o1669 

.02115 

20 
30 
40 

,02884 
.04136 
.05286 

-.o2187 
-.03114 
-.03949 

. O S 9 8  -.02465 -30 -.05649 .04454 

50 -.06019 .02516 50 .06348 -.Ob711 

'211312>22 = Sp1 "p2 *1lc12*3 1 N p 1  9p2 
~~~ 

-50 -.On931 .04366 -50 .00013 .O8175 
-lg -.om12 .03261 -40 .00?15 .oh 119 
-j0 -.0:L3!?i, .02305 -30 .00262 .OL315 
-20 -.oj1;4 .01$58 -20 .00?22 . o g l e  
-10 -.01506 .0069g. -10 .00128 .01285 

0 0 0 0 0 0 
10 .01406 -.00636 10 -.00141 -.0116 3 
20 .02717 -.01226 20 -.00289 -.o2225 
30 .039@ -.01770 30 -.00444 -.03194 
40 .05104 -.02280 -.00592 - .ob83 
50 ,06200 - . 0 ~ 5 6  -.00740 -.04gO1 

~*11:'124 3 2  %p1 9p2 5 9  6% ~ 
"p 

-50 -.09321 .05608 - .07169 - ,06452 
-1 0  -.06967 .O 3877 -.06005 -.Oh425 

-20 -.03134 .01471 -20 - .O 3147 -.01593 
-10 -.01506 .00641 -10 -.01587 -.00670 

0 0 0 0 0 0 
10 .01h12 -.00485 10 .01580 .00!+64 
20 
30 
10 

. 0 7 m r  - .OOP 30 
-.01070 
-.01201 

LT 

30 
1LO .06093 

.00759 

.OOQl9 

.0097 3 
50 -.01235 50 .07495 .003~a 

~ 

-30 - ,04936 .02528 -30 -.04640 -.02823 

':' 11-2 1 32 1p2 2 11*'C2I31 qp1 '1p2 
-50 - .017 36 -50 .01769 - .O 3675 
-40 -.01639 -10 .on30 - . 0 2 ~ 1 5  
-30 
-20 

-.01416 
- .01070 

-30 
-20 

.00686 

.00 377 
-.0 1997 
-.01256 

-10 - .00598 -10 ,00161 -.00594 
0 0 0 0 0 

10 .00528 10 - ,00114 .00527 
20 
30 

.03201 

.Om55 
.01606 
,02638 

20 
30 

- .00202 
-.00262 

.00999 

.01420 
40 .06557 -03839 40 .01799 
50 .08346 .05230 50 .02141 

~ 

$11'$22'$32 "pr Np2 *11$31$32 w p l  69p2 
~ 

-50 - .04963 -.08344 -50 .01715 - .O 3312 
-40 -.04459 -.06245 -40 .01110 - .02617 
-30 -.03658 -.Ob395 -30 .00686 -e01955 
-20 -.02616 -.02752 -20 .00383 -.01306 
-10 -.01385 -.01298 -10 .00161 -.00657 

0 0 0 0 0 0 
10 .01511 .01155 10 -.00114 .00670 
20 	 .o3120 .021B7 20 -.00158 .01365 
30 .om08 .03110 30 -.00237 ,02082 
40 .06557 ~ 3 9 3 6  40 - .00260 ,02828 
50 .08346 .04678 50 -.00261 .03603 
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TABm 111.- SYSTEM PARAMETERS 

K12 = 0.04412 (dimensionless) 

KZ2 = 0.042116 (dimensionless) 

up = 17.5 (l/sec) 

us = 30 ( l /sec)  

Kpl = 0.85 (l/sec2) 

Kll = 26.355 (l/secz) 

K21 = 23.96 (1/sec2) 

w1 = 5.039 (l/sec) 

w2 = 11.99 (l/sec) 

5 = 0.005 (dimensionless) 

Kqp = 0.7500 (dimensionless) 

K$ = 0.8025 (see) 
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TABLF: IV.- VALUES OF ERROR COEFFICIE3JTS USED TO CONSTRUCT ROOT-LOCUS PLOTS 

Percentage error  Error coefficients Percentage error  
in modal slopes i n  modal slopes Error coefficients 

*11h a1 4 9 2 2  “1 I a 2  

-50 0.01526 0.02048 -50 0.008 49 -0.01422 
-40 .oil28 .01514 -40 .(I0738 - 00993 
-30 .00786 .01055 -30 .00590 - .006447 
-20 .004895 .00657 -20 .00411 - -00369 
-10 .00229 .00308 -10 .00212 - .001571 

0 0 0 0 0 0 
LO -.002043 -.002741 10 -.002186 .001108 
20 - .00387 - .00519 20 - .00439 .00183 
30 -.00552 - .00741 30 -.00658 .002233 
40 - .007011 - .009409 40 --00873 .002376 
50 -.OO837 - .oil23 50 -.01082 .00231 
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Figure 1.- The f i rs t  three modal displacement f inc t ions  f o r  a uniform f ree- f ree  
beam.. 
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Figure 2.- Block diagram of system for processing attitude and attitude-rate information. 
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Figure 3.- Model vehicle 
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configuration showing possible sensor locations.  
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Figure 4.-Block diagram of the closed-loop system including the processing functions. 
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Figure 7 . - Effect of modal e r ro r s  on root  locus, both e r ro r  coef f ic ien ts  
pos i t ive ,  a1 = 0.007862, a2 = 0.01055. 
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Figure 9.	- Root-locus var ia t ions produced by negative e r ro r  i n  mode 1 a t  
sensor 1, and by negative e r ro r  i n  mode 2 at  sensor 1. 
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Figure 10.-Effect of modal errors on the r o o t  locus, error  coefficients of 
opposite sign, al = 0.00212, a2 = -0.001571. 
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Figure 11.-Effect of modal errors on the root locus, error coefficients of 
opposite sign, al = 0.00738, a2 = -0.00993. 
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Figure 12. - Root-locus var ia t ions produced by negative e r ro r  i n  mode 1at 
sensor 1, and by negative e r r o r  i n  mode 2 a t  sensor 2. 
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Figure 13.- Effect of modal errors on the root locus, error coefficients of 
opposite sign, a1 = -0.002186,a2 = 0.001108. 
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Figure 14.-Effect of modal errors on the root locus, e r ro r  coefficients of 
opposite sign, al = -0.00873, a2 = 0.002376. 
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Figure 15.- Root-locus var ia t ions produced by pos i t ive  e r ro r  i n  mode 1 at 
sensor 1, and by posi t ive e r ro r  i n  mode 2 at  sensor 2. 
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Figure 17.- ETfect of modal e r ro r s  on the  root  locus, both error coef f ic ien ts  
negative, a1 = -O.OO7Oll, a2 = -0.009409. 

53 

I 




t
14.0 

13.6 

13.2 

12.8 

ja 

12.4 

12.0 

11.6 

-0.4 0 0.4 0.8 I.2 I .6 2.o 2.4 
0


5.6 

5.4 

iw 

5.2 

5.0 

-0.2 0 0.2 0.4 0.6 0.8 
0-

Figure 18.-Root-locus variations produced by positive error  in mode 1 at 
sensor 1, and by positive error in mode 2 at sensor 1. 
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Figure 19.- Block diagram of system for processing accelerations i n  order t o  obtain the rigid-body 
t ranslat ional  acceleration. 
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Figure 20.- Block diagram of system for processing accelerations i n  order t o  obtain the  rigid-body 
pitching acceleration. 
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